Page 1 of 2		DIN UNIVERSITY		Total Time 3.5 hours	
	EXAM	INATION BOAR	D	Total Marks: 100	
Class: XI Time Allowed: 20 minutes	SUB	APER EXAMINATION	2025		
Q1: Note: Attempt all questions f		SECTION "A"		Marks: 17	
Note : Attempt all questions f					
1) Two bodies of masses 1 kg A. 2:1	B. 3:1	C. 1:3	D. 1:1	gies?	
2) If the wavelength of an ele A. X-ray	B. Ultraviolet	C. Radio waves	tet ball, what type of a D. Visible light	radiation is it?	
3) The experimental evidence A. Diffraction	e of the transverse natur B. Interference	e of light is: C. Polarization	D. Dispersion		
4) What is the frequency range	-	-	l pair of wires?		
A. 10 MHz to 15 MHzB. 5 MHz to 10 MHzC. 100 Hz to 5 MHzD. 10 Hz to 100 Hz					
5) A weightlifter consumes 5	00 J of energy to lift a l				
A. 125 watts	B. 500 watts	C. 250 watts	D. 1000 watts		
6) One radian is approximate A. 25°	B. 37°	C. 45°	D. 57°		
7) The escape velocity of a p	-	D. The redius	of the planet only		
A. The mass of the p C. Both mass and rac	•	D. The density	of the planet only y of the planet		
8) The force between two char is reduced to:	-	-	-	tivity \in r then force	
A. $F \in r$	B. r F \in	C. r F ∈	D. $\in \in r$		
9) The work done by centrip A. Maximum	etal forces is always: B. Minimum	C. Zero	D. None of these		
10) A dependent variable is: A. Cause	B. Effect	C. Cause and effect	D. Reason		
11) Data on a compact disc is					
A. Analog signal	B. Digital signal	C. Noise	D. Both A and B		
12) If the speed of a moving A. One fourth	B. Double	C. Half	D. Four times		
13) The product of charge "q is known as:				and opposite nature	
A. Electric dipole	B. Moment arm	C. Electric dipole mor		electric field	
14) A simple pendulum perfo A. 2T	B. 0.5T	C. 2.5T	D. 1.414T	period will be:	
15) Which among the follow A. Mass	B. Time	C. Solid angle	D. Luminosity		
16) If momentum is increase		e	2.20000000		
A. 44%	B. 55%	C. 66%	D. 77%		
17) In radio and television br A. Analog signal	oadcasts, the informatio	n signal is in the form of: B. Digital sign	nal		
C. Both analog and d	ligital signals	e e	alog nor digital signal	s	
Time Allowed: 30 minutes	PRACTI	CAL BASED ASSESSM	ENT	Marks 15	
Note: Attempt all questions.	Q19 carries <u>ONE</u> mark,	all others carry <u>TWO</u> man	ks each.		
18) The total distance covere	d by a free-falling objec	et in 3 seconds will be:			
(Note: The acceleration due	e to gravity 'g' is 10 m/s ² .)				
A. 15m 19) When two vectors are add	B. 30m ded, the resultant vector	C. 45m is represented by:	D. 60m		
A. A straight line joi	ning their midpoints	B. The diagona	l of the parallelogram f	ormed by the vectors	
C C	tween their magnitudes	-	erpendicular to both	-	
20) A simple pendulum has a	bob made of ice that m	elts continuously during os	1	he time period of the	
2nd oscillation compare t A. Less	B. More	C. Same	D. Unpredictable		
11. 1000	D. 141010	C. Same	D. Onpredictable		

Page 2	of 2		UDDIN UNIVERS	ARD	Total Time 3.5 hours				
21) Calculate the wave length of the sound wave, if the frequency and velocity of a sound wave are 40 Hz and 320 m/s respectively.									
	A. 8 m	B. 40 m	C. 80 m	D. 12800 m					
22) Two sound waves have frequencies of 250 Hz and 300 Hz. The speed of sound is 340 m/s. What is the difference between the wavelengths of the two waves?									
	A. 0.23 m	B. 1.1 m	C. 1.4 m	D. 6.8 m					
23) A	23) A ball is thrown vertically upwards. Air resistance is negligible. Which statement is correct?								
A. By the principle of conservation of energy, the total energy of the ball is constant throughout its motion.B. By the principle of conservation of momentum, the momentum of the ball is constant throughout its motion.C. The kinetic energy of the ball is greatest at the greatest height attained.D. The potential energy of the ball increases at a constant rate during its ascent.									
24) A	man is running a race	e in a straight line. W	hat is an approximate value	of his kinetic energy?					
	A. 10 J	B. 100 J	C. 1000 J	D. 10000 J					
25) What correctly expresses the volt in terms of SI base units?									
	Α. Α Ω	B. W A ⁻¹	C. $kgm^2 s^{-1} A^{-1}$	D. $kgm^2 s^{-3} A^{-1}$					
END OF SECTION A									
Class: Time:	XI 2 hours 40 minutes	SUBJECT: PHYS	L PAPER EXAMINATIO ICS SECTION "B" AND S SHORT ANSWER QUEST	ECTION "C"	Total Marks 68 36 Marks				
 Q2: NOTE: Answer any <u>NINE</u>-part question from this section. All question carries equal marks. Draw diagram where necessary. (i) Explain the work-energy theorem and derive its mathematical expression. (ii) How do factors such as gravity, mass, and amplitude of oscillation affect the period of a simple pendulum? Discuss each factor in detail. (iii) If the moment of inertia of a rotating body is reduced by half, what happens to its angular velocity? (iv) A canal lock gate is 20 m wide and 10 m deep. Given the water's density as 1000 kg/m³ and gravitational acceleration as 9.8 m/s², calculate the thrust acting on the gate. (v) Define core and cladding in optical fibers. On what principle does optical fiber communication work? (vi) An electron moves with a speed of 10° m/s. Calculate its energy in electron volts (eV). (vii) In a Michelson interferometer, if 92 bright fringes appear on the screen as one of the mirrors is moved by 25.8 micrometers, what is the wavelength of 1 gravitational field. b) Determine the average power output during the activity. (ix) Why is the terminal voltage of a cell lower than its emf? (x) When a male voice undergoes modulation and transmission, it sounds like a female voice to the receiver. Explain why this happens. (xi) For an isolated rotating body, explain the relationship between angular velocity and radius. (xii) A diffraction pattern is observed from a single slit of width 0.020 mm. The screen is placed 1.20 m away, and the wavelength of light used is 430 nm. What is the width of the central maximum? (xii) List two practical applications of Bernoulli's principle. (xv) What is resonance frequency? Explain its relationship to the natural frequency of an oscillating system. 									
		SECTION "C	C" DETAILED ANSWER	QUESTIONS	32 Marks				
Note: Answer any <u>TWO</u> questions from this section. All question carries equal marks. Draw diagrams where necessary.									
3. a) Explain the concept of the independence between horizontal and vertical motion in projectile motion.b) Calculate the combined capacitance of capacitors in series and parallel.									
4. a) Discuss the Doppler effect for sound waves. How do the motion of the source and the observer affect the perceived frequency and pitch of the sound?b) State the three equations of motion for uniformly accelerated motion and derive them.									
5. a) l	Define Simple Harmo	nic Motion (SHM). I	Discuss the key characterist	ind derive them. ics of a system undergoing					

b) Explain Archimedes' Principle and how it can be used to determine the purity of gold using density.

END OF PAPER