Page 1 of 2		DIN UNIVERSITY NATION BOARI	Total Time 3 hoursDTotal Marks: 100
Class: XII Time Allowed: 20 minutes Q1:	MODEL P. SUBJ	APER EXAMINATION 2025 IECT: MATHEMATICS SECTION "A"	Marks: 20
Note: Attempt <u>ALL</u> questions from this section. Each question carries <u>ONE</u> mark.			
1. The point (3,3) is	the circle x^2 +	$-y^2 = 64.$	
A. Outside	B. Inside	C. On	D. Cannot be determined
2. The perimeter of a rectangle is given by the function $p(x, y) = 2(x + y)$, where x and y are the length and breadth,			
respectively. What is the	sum of the partial derivativ	ves $p(x, y)$ with respect to	x and y?
A. 2 <i>x</i>	В.2у	C. $2(x + y)$	D. 4
3. What is the slope of a line	perpendicular to a vertica	l line?	
A. Z	B. $\frac{1}{2}$	$C.90^{\circ}$	D. Undefined
4. The length of tangent draw $\sqrt{24}$	In to the circle $x^2 + y^2 + y^2$	2y - 1 = 0 from the poin	t(5,2) is:
A. $\sqrt{24}$ unit	B. $\sqrt{33}$ unit	$C \cdot \sqrt{32}$ unit	D. $\sqrt{31}$ unit
5. The equation of the tangent $A_{2} = 0$	It to the circle $x^2 + y^2 = 2$	25 at $(3,4)$ is	$D_{2\alpha} + 4\alpha = 5$
A. $3x + 4y = 0$ 6 Let $f(x, y)$ and $g(x, y)$ by	B. $4x + 3y = 25$	C.3x + 4y = 25	D. $3x + 4y = 5$
homogenous function $\frac{f(x,y)}{g(x)}$	$\frac{(v)}{(v)}$?	tuegrees 2 and 3, respect	very. what is the degree of the
A. 6	B. 1	C. $\frac{2}{2}$	D1
7. In the bisection method, th	he approximate root is the	of the end	dpoints of the interval in which an actual
root lies.			
A. Arithmetic mean	B. Geometric mean	C. Sum	D. Product
8. If $g(x) = 3x + 2$ and $g(x) = 3x + 2$	f(x) = x then $f(2) =$		
A. 2	B. 6	C. 0	D. 8
9. The area bounded by the curve $y = ln ex^2$ from $x = -1$ to $x = 1$ is			
A. $\frac{2}{3}$	B. 1	C. <i>ln</i> 2	D. <i>ln</i> 3
10. What point on the line $2x - 3y = 5$ is equidistant from (1,2) and (3,4)?			
A. (-2,2)	B. (4,1)	C. (1,-1)	D. (4,6)
11. The center of a circle give	yen by the equation $x^2 + y^2$	$x^{2} + 10 - 8y + 1 = 0$ is	
A. (-5,8)	B. (-10,8)	C. (5,-4)	D. (-5,4)
12. In a plane, three or more	points are said to be collir	near if	
A. They lie on a circle		B. They from closed loop tighter	
C. They lie on a stra	ight-line	D. They do not make a	ay defined shapes
13. The equation $xy = c^{-1}$ rep	P Ellipso	C. Hyperbole	D. Cirolo
A. rarauoia 14 In the transzoidal rule, th	D. Ellipse	C. Hyperbola must be a multiple of	D. Circle
	R 1	C^2	D 3
15. If a function $f(x)$ satisfie	es $f(c) = 0$, the point (c.	f(c) is referred to as a	D . 5
A. Maximum point	B. Minimum point	C. Stationary point	D. Critical point
16. The eccentricity of a rect	tangular hyperbola is	<i></i>	L
A. 1	B. 2	C. $\sqrt{3}$	$D.\sqrt{2}$
17. The center of the circle r	epresented by $x^2 + y^2 + 6$	5x + 8 = 0 is	
A. On the x-axis	B. On the y-axis	C. In the first quadrant	D. At the origin
18. For what value of k does	the circle $x^2 + y^2 + 6x - x^2$	-4y + k = 0 have a radiu	us of 5?
A. 11	B12	C. 10	D. 12
19. Two lines are said to be	parallel if their slopes are		
A. Equal B. Unequal C. Non-existent D. Negative reciprocals of each other			
20. The fastest method to solve the nonlinear equation numerically is:			
A. Bisection Method	1	B. False Position Metho	bc
C. Newton Raphson	Method	D. Simpson $\frac{1}{3}$ Method	

END OF SECTION A

Class: XII

Total Time 3 hours Total Marks: 100

Total Marks 80

Marks 50

Q2:

MODEL PAPER EXAMINATION 2025 Time: 2 hours 40 minutes SUBJECT: MATHEMATICS SECTION "B" AND SECTION "C" SECTION "B" SHORT ANSWER QUESTIONS

Note: Attempt any **TEN-PART** questions from this section. All questions carry equal marks.

- (i) Evaluate any one of the following limits. a) $\lim_{x\to 0} \frac{\sqrt{x+3}-\sqrt{3}}{x}$ b) $\lim_{x\to 0} \frac{3sinx}{2x}$ $\lim_{x \to 0} \frac{3sinx - x^3}{2x}$
- (ii) Find the equation of the circle whose centre is at its origin and it contains a point (5,6).

(iii) Find the order and degree of
$$\frac{d^{3y}}{dx^3} - 5 \left(\frac{d^{2y}}{dx^2}\right)^3 + 7 \left(\frac{dy}{dx}\right)^8 = 0$$

- (iv) Obtain the first three terms of the Maclaurin's series for e^{sinx} .
- (v) Find the values of m and n, so that the given function f is continuous at x = 3

$$f(x) = \begin{cases} mx & if x < 3 \\ n & if x = 3 \\ -2x + 9 & if x > 3 \end{cases}$$

- (vi) Evaluate $\int \frac{5dx}{25x^2+9}$ by using trigonometric substitution.
- (vii) Differentiate $\ln[tanh(x^2 + 2x + 1)]$ with reference to x

(viii) The line through (6, -4) and (-3, 2) is parallel to the line through (2, 1) and (y, 0). Find y.

- (ix) A, B and C are three collinear points and the coordinates of A and B are (3,4) and (7,7) respectively. Find the coordinates of C if $|\overline{AC}| = 10$ units.
- (x) The area of the triangle is given by formula $A = \frac{1}{2}bh$. Differentiate A with respect to their independent variables.
- (xi) Find the equation of the parabola whose vertex is (3,4) and directrix x = 5.
- (xii)Use Bisection method to find a real root of f(x) = cosx, [1,2] up to one decimal place (five iterations) OR

Show that the line y = 2x + 4 is tangent to the ellipse $4x^2 + 3y^2 = 12$. Also find the point of contact.

(xiii) Find eccentricity, foci, vertices and latus rectum of $\frac{x^2}{9} - \frac{y^2}{16} = 1$

SECTION "C" DETAILED ANSWER QUESTIONS

Marks 30

 $\frac{1}{f^2} + \frac{1}{g^2} = \frac{1}{c}$

Note: Attempt any FIVE QUESTIONS from this Section. Question No.3 is compulsory. All questions carry equal marks.

- B. Evaluate $\int \frac{(x^2+2x+3)dx}{x^3-x}$ by using partial fraction A. Integrate $\int x^2 e^x d^x$ by parts Q.3
- Find the area above the x-axis under the following curve $y = 5e^{5x}$ Q.4 x = -2. x = 3

Q.5 Find the condition of tangency of line y = mx + c to ellipse

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

Prove that the two circles $x^2 + y^2 + 2gx + c = 0$ and $x^2 + y^2 + 2fy + c = 0$ touch each other, if Q.6

The gradient of one of the lines of $ax^2 + hxy + by^2 = 0$ is twice that of the other. Show that $8h^2 = 9ab$ Q.7

Q.8 Solve the any ONE of the following differential equations:

A.
$$\frac{dy}{dx} = \left(\frac{y}{x}\right) + \sin\left(\frac{y}{x}\right)$$

B. $(6x^2 + 2y^2)dx - (x^2 + 4xy)dy = 0$

- For what value of k, the line y=2kx will be tangent to $2x^2 5y^2 = 10$ Q.9
- Use Newton Raphson method to find the real root of $f(x) = 3x \sqrt{1 + \sin x}$, $x_0 = 1$ Q.10

END OF PAPER