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UNIT#1 
Algebraic expression 

c) yy2−2y+1−2y−1+3y+2yy2−2y+1−2y−1+3y+2  

 

 Solution  

Let‟s first factor the denominators and determine the least common denominator. 

y(y−1)2−2y−1+3y+2y(y−1)2−2y−1+3y+2 

So, there are two factors in the denominators a y-1 and a y+2. So we will write both of those 

down and then take the highest power for each. That means a 2 for the y-1 and a 1 for the y+2. 

Here is the least common denominator for this rational expression. 

lcd : (y+2)(y−1)2lcd : (y+2)(y−1)2 

Now determine what‟s missing in the denominator for each term, multiply the numerator and 

denominator by that and then finally do the subtraction and addition. 

yy2−2y+1−2y−1+3y+2=y(y+2)(y−1)2(y+2)−2(y−1)(y+2)(y−1)(y−1)(y+2)+3(y−1)2(y−1)2(y+2)

=y(y+2)−2(y−1)(y+2)+3(y−1)2(y−1)2(y+2)yy2−2y+1−2y−1+3y+2=y(y+2)(y−1)2(y+2)−2(y−1)(

y+2)(y−1)(y−1)(y+2)+3(y−1)2(y−1)2(y+2)=y(y+2)−2(y−1)(y+2)+3(y−1)2(y−1)2(y+2) 

Okay now let‟s multiply the numerator out and simplify. In the last term recall that we need to do 

the multiplication prior to distributing the 3 through the parenthesis. Here is the simplification 

work for this part. 

yy2−2y+1−2y−1+3y+2=y2+2y−2(y2+y−2)+3(y2−2y+1)(y−1)2(y+2)=y2+2y−2y2−2y+4+3y2−6

y+3(y−1)2(y+2)=2y2−6y+7(y−1)2(y+2)yy2−2y+1−2y−1+3y+2=y2+2y−2(y2+y−2)+3(y2−2y+1)

(y−1)2(y+2)=y2+2y−2y2−2y+4+3y2−6y+3(y−1)2(y+2)=2y2−6y+7(y−1)2(y+2) 

 

d) 2x x
2
−9−1x+3−2x−32x x 2−9−1x+3−2x−3  

 

 Solution  

Again, factor the denominators and get the least common denominator. 

2x(x−3)(x+3)−1x+3−2x−32x(x−3)(x+3)−1x+3−2x−3 

The least common denominator is, 

lcd : (x−3)(x+3)lcd : (x−3)(x+3) 

Notice that the first rational expression already contains this in its denominator, but that is okay. 



In fact, because of that the work will be slightly easier in this case. Here is the subtraction for 

this problem. 

2xx2−9−1x+3−2x−3=2x(x−3)(x+3)−1(x−3)(x+3)(x−3)−2(x+3)(x−3)(x+3)=2x−(x−3)−2(x+3)(x−

3)(x+3)=2x−x+3−2x−6(x−3)(x+3)=−x−3(x−3)(x+3)2xx2−9−1x+3−2x−3=2x(x−3)(x+3)−1(x−3)(

x+3)(x−3)−2(x+3)(x−3)(x+3)=2x−(x−3)−2(x+3)(x−3)(x+3)=2x−x+3−2x−6(x−3)(x+3)=−x−3(x−

3)(x+3) 

Notice that we can actually go one step further here. If we factor a minus out of the numerator 

we can do some canceling. 

2xx2−9−1x+3−2x−3=−(x+3)(x−3)(x+3)=−1x−32xx2−9−1x+3−2x−3=−(x+3)(x−3)(x+3)=−1x−3 

Sometimes this kind of canceling will happen after the addition/subtraction so be on the lookout 

for it. 

 

e 4y+2−1y+14y+2−1y+1 

 

Solution  

The point of this problem is that “1” sitting out behind everything. That isn‟t really the problem 

that it appears to be. Let‟s first rewrite things a little here. 

4y+2−1y+114y+2−1y+11 

In this way we see that we really have three fractions here. One of them simply has a 

denominator of one. The least common denominator for this part is, 

lcd : y(y+2)lcd : y(y+2) 

Here is the addition and subtraction for this problem. 

4y+2−1y+11=4y(y+2)(y)−y+2y(y+2)+y(y+2)y(y+2)=4y−(y+2)+y(y+2)y(y+2)4y+2−1y+11=4y(

y+2)(y)−y+2y(y+2)+y(y+2)y(y+2)=4y−(y+2)+y(y+2)y(y+2) 

Notice the set of parenthesis we added onto the second numerator as we did the subtraction. We 

are subtracting off the whole numerator and so we need the parenthesis there to make sure we 

don‟t make any mistakes with the subtraction. 

Here is the simplification for this rational expression. 

4y+2−1y+11=4y−y−2+y2+2yy(y+2)=y2+5y−2y(y+2) 

 
 



Unit#3 

EXERCISE 4 

Suppose x and y are positive number, show that ×  =  and hence 

simplify . 

EXERCISE 5 

Find the area and perimeter of the following triangle. 

  

  

  

RATIONALISING THE DENOMINATOR 

In the pre-calculator days, finding an approximation for a number such as  was difficult to 

perform by hand because it involved calculating  (approximately) by long division. 

To overcome this, we multiply the numerator and denominator by  to obtain 

 ×  =  = 3 . 

We can then approximate and write 

 = 3  ≈ 3 × 1.4142 = 4.2426, to four decimal places. 

Since the introduction of calculators, this is no longer necessary. 



There are many occasions in which it is much more convenient to have the surds in the 

numerator rather than the denominator. This will be used widely in algebra and later in calculus 

problems. 

The technique of removing surds from the denominator is traditionally called rationalising the 

denominator (although in practice we make the denominator a whole number). 

EXAMPLE 

Rationalise the denominator of . 

SOLUTION 

 ×  =  = . 

BINOMIAL DENOMINATORS AND CONJUGATE SURDS 

In the expression , it is not obvious to remove the surds from the denominator. 

To do this, we exploit the difference of two squares identity, (a + b)(a − b) = a
2
 − b

2
. 

If we multiply  +  by  −  we obtain 7 − 5 = 2. 

The numbers  +  and  −  are said to be conjugates of each other. 

2 + 7  and 2 − 7  are also said to be conjugate to each other. 

Thus, the method we will employ to rationalise the denominator involving such surds, is to 

multiply the top and bottom by the conjugate of the surd in the denominator. 

EXAMPLE 

Express the following surds with a rational denominator. 

a   b   

SOLUTION 

a   =  ×  =  = . 



b   =  ×  =  = . 

This last example shows quite dramatically how rationalising denominators can, in some cases, 

simplify a complicated expression to something simpler. However if all that is wanted is an 

approximation a calculator could be used. 

EXTENSION-CUBIC SURDS 

All of the ideas discussed above can be discussed for surds of the form . 

For example: 

 5  + 7  = 12  

 2  × 4  = 8  

  ×  = 10 

LINKS FORWARD 

MINIMAL POLYNOMIALS 

Surds arise naturally when solving quadratic and some higher order equations. If we begin with a 

quadratic that has integer coefficients and solutions which are surds, then it can be shown that 

the surds are conjugates of each other. Thus, for example, if we know that a certain quadratic 

equation with integer coefficients has 2 +  as one of its solutions, then we can say that the 

other solution is 2 − . 

Indeed, we can go further and find the monic quadratic equation that has these surds as solutions. 

Factor the monic quadratic x
2
 + bx + c as (x − α)(x − β). 

Expanding this and comparing coefficients gives α + β = −b, αβ = c. 

Hence, taking α = 2 + , β = 2 − , we have 

b = −4, c = (2 + )(2 − ) = −3 

and so the monic quadratic equation with roots 2 + , 2 −  is 

x
2
 − 4x − 3 = 0. 

TRIGONOMETRIC RATIOS 



Apart from solving quadratics, surds also arise in trigonometry. 

The angles 30°, 45°, 60° have the following trigonometric ratios. 

Triangle ABC is equilateral. AD is the line interval from A to the midpoint of BD. 

Triangles ABD and ACD are congruent (SSS). 

ABD =60°, BAD = 30° and Pythagoras‟ theorem gives 

that AD = . 

Hence, 

 

sin 30° = cos 60° 

= , 

 

sin 60° = cos 30° 

= , 

 tan 30° =  and  
tan 60° = . 

Using a square divided by a diagonal we form two isosceles right-angled triangles and can see 

sin 45° = cos 45° =  and tan 45° = 1. 

ALGEBRAIC MANIPULATIONS 

The technique of rationalising the denominator can also be applied in algebra. 

EXAMPLE 

Express  without the „surd‟ in the denominator. 

SOLUTION 



 =  ×  = . 

This technique is used in calculus when we wish to find the derivative y =  from first 

principles. In that case, we move the square root from the numerator to the denominator. 

We may also need to do this to find certain limits as the following example shows. 

EXAMPLE 

Find   − . 

SOLUTION 

We cannot find this easily as it stands. We will shift the surds into the denominator by using the 

conjugate expression. This process is called rationalising the numerator. 

 

 −  

=  (  − )

 

 

=   

 

=   

 = 0 

EXERCISE 6 

Find  − x. 

(After shifting the surds to the denominator, you will need to divide top and bottom carefully 

by x in order to find the limit. The answer to this problem is somewhat surprising! Try 

substituting some large values of x on your calculator to confirm your answer.) 

TRINOMIAL DENOMINATORS 

We can extend the technique to deal with trinomial denominators such as . 

We firstly multiply top and bottom by ((1 + ) − ). This will remove the term involving , 



then continue the process as before. 

EXERCISE 7 

Complete the problem as outlined above. 

COMPLEX NUMBERS 

A complex number is number of the form a + ib where a, b are real numbers and the 

number i has the property that i
2
 = −1. 

Given an number such as  we seek to express it in the form a + ib. Thus we need to shift the 

number i to the top. This is done by realising the denominator, which is achieved in a similar 

way to rationalising the denominator. The conjugate of 2 + i is 2 − i. 

Thus we write, 

 =  ×  =  =  =  − i. 

NUMBER FIELDS 

The integers are contained within the set of rational numbers and likewise, the rational numbers 

are contained within the set of real numbers. Mathematicians study sets of numbers that lie 

`between‟ the integers and the real numbers. 

For example, we can form the set Z[ ] = {a + b : a, b integers}. This set behaves in many 

ways like the integers − we can add, subtract and multiply and we stay within the set. We can 

also factorise numbers inside this set into other numbers also belonging to the set. Thus we can 

define analogues to the prime numbers within this set. The set contains the set of integers, 

(put b = 0), and is contained within the set of real numbers. 

It is an example of a quadratic extension of the integers. 

Similarly, we can form the set Q[ ] = {a + b :a, b rationals}. This set behaves in many ways 

like the rationals − we can add, subtract, multiply and divide and obtain numbers still belonging 

to the set. This set contains all of the rational numbers and is a subset of the real numbers. It is an 

example of a quadratic number field. Sets such as these have assisted mathematicians in 

solving all sorts of problems in number theory, and motivate ideas to many branches of modern 

abstract algebra. 

HISTORY 

We have mentioned in several other modules (see especially the module on the Real numbers) 

that the Greeks discovered irrational numbers, in the form of surds, when applying Pythagoras‟ 

https://amsi.org.au/teacher_modules/Real_numbers.html


theorem. 

One of the best known surds from the Greek world is the so-called Golden Ratio 

 =  ≈ 1.618034. 

This number arises geometrically from the following problem. 

 

Consider the 1 × x rectangle ABCD as shown. The line EF cuts off a 1 × 1 square AEFD as 

shown. We seek to find the value of x such that the rectangle EBCF is similar to the original 

rectangle ABCD. 

The Greeks believed that such a rectangle is aesthetically pleasing to the eye and indeed, the base 

rectangle of the Parthenon was built using a rectangle similar to to the one described above. 

Since AEFD is a square, AD = AE = EF = DF = 1, FC = 1 − x. Also, since the rectangles are 

similar,  =  and so  = . Cross-multiplying and re-arranging, we arrive at the 

quadratic equation which we can solve using the quadratic formula to produce, 

x = ,  . Since x is positive, we take the solution x = . Traditionally this 

number is given the symbol  and it is called the golden ratio. 

EXERCISE 8 

Find the value of 
2
 and . Also prove that  = 1 +  and 

3
 = 

2
 + . 

The golden ratio arises in many places in mathematics − most notably in its connection to the 

Fibonacci numbers. It also arise in various ratios of sides in the regular pentagon and pentagram. 

The latter has made it a favourite of those who look for mystical properties in numbers. The 

connection with the pentagon and pentagram is, however, hardly surprising, since  = cos 72° 

and this angle arises naturally in such figures. 

Bhaskara (1114-1185) was an Indian Mathematicians wrote two important works, the 



Lilavati(named after his daughter) which was concerned with arithmetic and the Vijaganita 

concerned with algebra. He was the first to handle the arithmetic of surds and gave the 

formula  +  =  which was mentioned in an earlier exercise. In later Arabic 

mathematics we also see the more exotic rules such as 

 +  =  

Bhaskara often wrote mathematics in poems, for example: 

The square root of half the number of bees in a swarm 

Has flown out upon a jasmine bush 

Eight ninths of the swarm has remained behind 

A female bee flies about a male who is buzzing inside a lotus flower 

In the night, allured by the flower’s sweet odour, he went inside it 

And now is trapped! 

Tell me, most enchanting lady, the number of bees. 

This is equivalent to solving + x + 2 = x, (which has solution x = 72). 

During the period known as the Dark Ages in the West, Greek mathematics was copied, polished 

and extended by Arabic mathematicians in the regions currently known as Iraq and Iran and also 

in Moslem Spain, especially in Granada. During this period little mathematics was done in the 

West, but the Arab mathematicians translated Greek mathematics into Arabic − some of it now 

lost in the Greek and only surviving in Arabic. 

In the 12th century, when Granada fell back into the hands of the West, translators from Europe 

travelled to Spain and began translating the Arabic mathematical texts into Latin. Although good 

scholars, they were sometimes confused both by the Arabic and also by the mathematics when 

they were undertaking their translations. One such confusion led to the word surd coming into 

mathematical language. The word is a shortened form of surdus which is Latin for deaf. When 

the Arab mathematicians came upon the Greek word alogos − irrational, without reason, they 

translated it by the Arabic word asamm which means both irrational and deaf. Thus rational and 

irrational numbers were called audible and inaudible numbers respectively by Arabic 

mathematicians. The latter translators, not understanding the purpose of the word, 

translated asamm by surdus. 

In the 15th century, when algebra was developing in the West, surds were written using an 

abbreviated notation. For example, Cardano (1501-1576) would have written 2 +  as 2pr2, 

where the p stands for plus and r for radix − Latin for root. It is believed that the modern square 

root sign developed from the letter r. 

Cardano also worked with cube roots, since in his famous book the Ars Magna, (The Great Art), 

he gives a method for solving cubic equations. This method is outlined below, since it may be of 



interest to some teachers. It is not part of the high school curriculum. 

The Solution of the Cubic 

To solve x
3
 + 3x + 1 = 0, we put x = u + v. Substituting and moving the last two terms to the 

opposite side we have 

(u + v)
3
 = −1 − 3(u + v). 

Now the left hand side can be expanded and then written as 

(u + v)
3
 = u

3
 + v

3
 + 3u

2
v + 3uv = u

3
 + v

3
 + 3uv(u + v). 

Hence, u
3
 + v

3
 + 3uv(u + v) = −1 − 3(u + v). 

We now „equate‟ u
3
 + v

3
 = − 1 and 3uv = −3. This last equation can be divided by 3 and then 

cubed to give u
3
v

3
 = −1. Thus we have the sum and product of the numbers u

3
, v

3
. We can 

therefore construct a quadratic equation with these number as its roots, since we have the sum 

and product of the roots. The quadratic is z
2
 + z − 1 = 0. We can solve this to obtain z = 

, and these two numbers represent u
3
, v

3 
, in either order. Taking cube roots and adding, 

we obtain 

x =  + . 

This method will always work for cubics which have only one real root. Strange things happen 

when we try to apply the method to cubics with three real roots. 

ANSWERS TO EXERCISES 

EXERCISE 1 

2  

EXERCISE 2 

BA = 2 , Perimeter = 12  

EXERCISE 3 

−23 



EXERCISE 4 

 +  

EXERCISE 5 

Area = 6 and Perimeter = 2  + 6 

EXERCISE 6 

 

EXERCISE 7 

 

EXERCISE 8 

2 
=  ,  =  

1 +  = 1 +  =  

3 
=  ×  = 2 +  

4 
+  =  +  = 2 +  . 

 

 

 

 

 

 

 



 

REFERENCES: 

PTBB General Math class 10  Chapter 1 

 For which of these triangles is ? 

  

A) 

 

  

B) 

 

  

C) 

 

  

D) 



 

  

ANSWER  

A) 

  

Incorrect. This is not a right triangle, so you cannot use the Pythagorean Theorem 

to find r. The correct answer is Triangle B. 

  

B) 

  

Correct. This is a right triangle; when you sum the squares of the lengths of the 

sides, you get the square of the length of the hypotenuse. 

  

C) 

  

Incorrect. This is not a right triangle, so you cannot use the Pythagorean Theorem 

to find r. The correct answer is Triangle B. 

  

D) 



  

Incorrect. This is not a right triangle, so you cannot use the Pythagorean Theorem 

to find r. The correct answer is Triangle B. 

For which of these triangles is ? 

  

A) 

 

  

B) 

 

  

C) 

 

  



D) 

 

  

ANSWER  

A) 

  

Incorrect. This is not a right triangle, so you cannot use the Pythagorean Theorem 

to find r. The correct answer is Triangle B. 

  

B) 

  

Correct. This is a right triangle; when you sum the squares of the lengths of the 

sides, you get the square of the length of the hypotenuse. 

  

C) 

  

Incorrect. This is not a right triangle, so you cannot use the Pythagorean Theorem 

to find r. The correct answer is Triangle B. 

  



D) 

  

Incorrect. This is not a right triangle, so you cannot use the Pythagorean Theorem 

to find r. The correct answer is Triangle B. 

  

  

Finding the Length of a Leg 

  

You can use the same formula to find the length of a right triangle‟s leg if you are given 

measurements for the lengths of the hypotenuse and the other leg. Consider the example below. 

  

  

Example 

Problem Find the length of side a in the triangle below. Use a calculator to 

estimate the square root to one decimal place. 

 

 
 
 
 
 
 



UNIT-A 
Practice Problems 

Problem 1 

Use Heron's formula to find the area of the triangle pictured with the following side lengths. 

AB=8BC=41CA=44AB=8BC=41CA=44 

Problem 2 

Determine the area of the triangle using Heron's formula  to find the area of the triangle pictured 

with the following side lengths. 

  

  

Problem 3 
Determine the area of the triangle using Heron's formula to find the area of the triangle pictured 

with the following side lengths. 

Problem 4 

If the perimeter of △ABC△ABC is 3232 units, its area is 35.835.8 units squared, and 

AB=14AB=14 and BC=12BC=12, what is the length of the third side, side CACA ? 

Problem 5 

If the perimeter of a triangle is 26 units, its area is 18.7 units squared, and the lengths of AB = 12 

and BC = 4, what is the length of the third side, side CA? 

 

Derivation of Heron's / Hero's Formula for Area of Triangle 

For a triangle of given three sides, say a, b, and c, the formula for the area is given by 

  

A=s(s−a)(s−b)(s−c)−−−−−−−−−−−−−−−−−√A=s(s−a)(s−b)(s−c) 

  

where s is the semi perimeter equal to P/2 = (a + b + c)/2. 

  

 

https://www.mathwarehouse.com/geometry/triangles/area/herons-formula-triangle-area.php#heronsFormula
https://www.mathwarehouse.com/geometry/triangles/area/herons-formula-triangle-area.php#heronsFormula
https://www.mathwarehouse.com/geometry/triangles/area/herons-formula-triangle-area.php#heronsFormula


 
 

 

 



 

 

REFERENCES: 
PTBB general math class 10 chapter 9 



 

 


